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Abstract

A combination of techniques, including rational number synchronisation and pre-diagonalisation of the time-dependent periodic
Hamiltonian, are described which allow the efficient simulation of NMR experiments involving both magic-angle spinning (MAS)
and RF irradiation, particularly in the important special case of phase-modulated decoupling sequences. Chebyshev and conventional
diagonalisation approaches to calculating propagators under MAS are also compared, with Chebyshev methods offering significant
advantages in cases where the Hamiltonian is large and time-dependent but not block-diagonal (as is the case for problems involving
combined MAS and RF). The ability to simulate extended coupled spin systems efficiently allows 1H spectra under homonuclear decou-
pling to be calculated directly and compared to experimental results. Reasonable agreement is found for the conditions under which
homonuclear decoupling is typically applied for rigid solids (although the increasing deviation of experimental results from the predic-
tions of theory and simulation at higher RF powers is still unexplained). Numerical simulations are used to explore three features of these
experiments: the interaction between the magic-angle spinning and RF decoupling, the effects of tilt pulses in acquisition windows and
the effects of ‘‘phase propagation delays” on tilted axis precession. In each case, the results reveal features that are not readily anticipated
by previous analytical studies and shed light on previous empirical observations.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Solid-state NMR; H-1; Resolution; Numerical simulation; MAS; CRAMPS; Homonuclear decoupling
1. Introduction

Solid-state proton NMR spectra are typically poorly
resolved due to the strength of the dipolar coupling net-
work which, unlike in the solution-state, is not significantly
averaged by molecular motion. Although fast magic-angle
spinning (MAS) can substantially reduce 1H linewidths, the
dipolar linewidth (typically �50 kHz for organic solids) is
significant in comparison to spin rates achieved by cur-
rently available probes (up to 70 kHz).

1H resolution can be greatly increased by using homonu-
clear decoupling sequences such as FSLG [1], PMLG [2] or
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DUMBO [3] to suppress the dipolar couplings, in combina-
tion with MAS to remove other anisotropic broadening
terms, such as the chemical shift anisotropy (CSA). The
efficient suppression of the dipolar couplings using homo-
nuclear decoupling is critical for an increasing number of
important solid-state NMR experiments such as those
involving spin-diffusion between resolved 1H sites [4], 1H
homonuclear double-quantum correlation [5,6], as well as
heteronuclear correlation experiments [7,8].

Unfortunately understanding what resolution can be
achieved in 1H solid-state NMR is a formidable challenge,
since it inevitably involves the multi-spin nature of the spin
system. Although NMR lineshapes can be reasonably
modelled by treating the effects of spin flips due to the cou-
plings in stochastic terms [9], such models require empirical
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factors (‘‘spin diffusion” rates, etc.) which cannot be pre-
dicted ab initio. Moreover, analytical treatments of multi-
spin systems rapidly become intractable, particularly if
the time-dependence of the couplings due to sample spin-
ning is included [10–12]. It has recently been shown, how-
ever, that numerical simulations can be made sufficiently
efficient that the spectra from large spin systems (say 10
or more coupled spin -½) can be calculated in reasonable
times on a desktop computer [13,14]. By combining numer-
ical simulation with experimental data from model systems,
a comprehensive picture of 1H resolution under magic-
angle spinning [15] could be derived.

In this paper, we consider the much harder problem of
predicting 1H lineshapes under simultaneous magic-angle
spinning and multi-pulse decoupling. There are two sepa-
rate aspects to this challenge. Firstly, the ‘‘experimental
space” is considerably larger for the problem of combined
sample rotation and RF decoupling. The experimental
variables for magic-angle spinning are few (spinning rate
and its stability, angle setting and its stability) and all are
well controlled using current spinning technology. In con-
trast, decoupling using RF irradiation is subject to a vari-
ety of factors which are much harder to control and to
characterise, such as variation of the B1 field across the
sample, transient responses associated with phase changes
[16,17], etc. Each of these can potentially degrade the qual-
ity of the spectrum and the different factors may interact in
non-intuitive ways.

The second aspect to the challenge is the difficulty of
analysing experiments that involve two independent time-
scales, that is sample spinning and RF irradiation. Tradi-
tionally this problem has been avoided by ensuring that
the RF decoupling has a much shorter cycle time, sc, than
the period of sample rotation, sr. The MAS rate is just fast
enough to suppress broadenings due to the CSA (which is
typically modest for 1H) and other ‘‘inhomogeneous” line-
broadening factors. Hence the performance of the RF
decoupling can be analysed in a ‘‘quasi-static” limit in
which the time-dependence of the dipolar couplings from
the spinning can be neglected. The other case in which sig-
nificant analytical progress can be made occurs when the
cycle times are simple multiples of each other. If, for
instance, 3sc ¼ sr, then the complete spin Hamiltonian is
periodic over the period sr, facilitating both analysis and
numerical simulation. However such exact ‘‘synchronisa-
tions” of the rotor and RF periods are generally undesir-
able as they are often associated with ‘‘recoupling”

conditions in which the time-dependence of the couplings
due to spinning disrupts the averaging of the spin terms
of the Hamiltonian from the RF decoupling [12], cf. also
Fig. 7. But as we show below, there are sound experimental
reasons to consider the general case of simultaneous RF
decoupling and MAS away from the quasi-static limit
while avoiding ‘‘resonances” from timescale synchronisa-
tion. Moreover, it is becoming increasingly important to
find decoupling schemes that are effective at the faster
MAS rates that are necessary at higher B0 fields [18,19].
Progress can be made in analysing problems involving
independent timescales using bimodal Floquet theory in
which the Hamiltonian is expanded in distinct Fourier
series for the sample spinning and RF decoupling time
dependencies [20]; the phase-modulated Lee–Goldburg
(PMLG) sequence has recently been analysed using this
approach [21]. Bimodal treatments are highly complex,
however, and it is difficult to relate general analytical for-
mulae to the detailed behaviour of a specific experiment.
Numerical simulation ought to provide an important
bridge between exact analysis and experimental behav-
iour. Moreover it should be relatively straightforward to
incorporate experimental deficiencies such as RF inhomo-
geneities into the simulations and gauge the effect of dif-
ferent experimental features on the effectiveness of
decoupling. Indeed, simulations are potentially of great
value in determining which potential factors are most
important to describe experimental behaviour, and hence
guide analytical work. However, the presence of multiple,
incommensurate timescales is a severe challenge for simu-
lation too. In contrast to ‘‘synchronised” cases where it is
sufficient to calculate density matrix propagators for the
evolution over a limited number of rotation or RF peri-
ods, it is necessary to integrate the evolution over the
entire free induction decay to calculate evolution under
an aperiodic Hamiltonian.

The first part of this article describes techniques which
address the difficulty of simulating NMR problems with
independent timescales. The combination of these indi-
vidual ‘‘tricks” improves the calculation speed to the
point where problems involving both MAS and RF can
be calculated within times that are not much longer than
those needed for problems involving MAS alone. The
second part describes how these efficient simulations have
been used to study multi-pulse homonuclear decoupling,
focussing on three specific questions: the effect of RF
inhomogeneity on homonuclear decoupling under static
vs. spinning conditions, the effect of tilt pulses on the
performance of windowed decoupling sequences and the
effect of the ‘‘phase propagation delays” on the effective
lock axis. In each case, the numerical simulations have
provided fresh insights into the long-standing problem
of achieving high resolution solid-state NMR spectra
from abundant spins.

2. Techniques

The section describes the different techniques that have
been used to improve the efficiency of calculation.
Although some have been previously used individually,
and are, for example, implemented in the SPINEVOLU-
TION program [14], the existing descriptions often lack
the detail required for independent implementation. As
the combination of all the techniques described are
required to make simulations of multi-spin systems involv-
ing simultaneous RF and sample spinning a practical prop-
osition, they are each described here in detail.
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2.1. Rational number synchronisation

As discussed above, the treatment of problems involving
independent periodicities is difficult for non-integral ratios
x between the periods, sr for rotation and sc for the RF. In
analytical work, bimodal Floquet approaches are required
which do not restrict the values of x that can be considered.
In numerical simulation, however, it is useful to consider
values of x that correspond to rational numbers, i.e., the
ratio between two integers, x ¼ N r=N c. There is then a
common period between the two time dependencies,
ssync ¼ N rsr ¼ N csc, over which the evolution is uniquely
defined. Provided that ssync is shorter than the time over
which the evolution needs to be calculated then the effi-
ciency of the calculation can be significantly improved by
using well-established algorithms for computing the evolu-
tion under a periodic Hamiltonian [22,24,25].

Fig. 1 shows the permitted ratios M : N , M < N for
maximal Ns of 8 and 15 (where M and N correspond to
N r or N c depending on whether sr > sc or vice versa). As
Nmax increases, a greater number of values of x are permit-
ted; the number of pairs is given by NmaxðNmax � 1Þ=2
although a small proportion of these will correspond to
the same ratio (whenever M and N have a common factor).
The drawback of considering ratios that involve large inte-
ger multiples is that (in principle) these require computing
the evolution over several cycle periods, proportionately
increasing the time required to calculate the required prop-
agation matrices. The lightness of the markers in Fig. 1 is
thus related to the time required for calculation, with the
simple ratios such as 1:2 and 1:3 being much quicker to
evaluate than, say, 13:15.

The distribution of the rational numbers shown in Fig. 1
is far from uniform with some values of x lying much closer
to a suitable ratio than others. Although the density of
allowed ratios increases in general regions approximately
quadratically with Nmax, there are local regions around sim-
ple integer ratios where the gaps can be large, e.g., around
x ¼ 0 and x ¼ 1. Here there is a ‘‘gap” of 1=Nmax, which
only decreases relatively slowly with increasing Nmax.
Hence, although it is important for efficiency to select
points at rational x, it may also be necessary to consider
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nmax=8
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Fig. 1. Permitted rational numbers M=N for M < N and N 6 Nmax for
two values of Nmax. The lightness of each marked ratio is proportional to
the N for that ratio and so indicates the length over which the evolution
needs to be evaluated, i.e., a lighter shade indicates a larger N and so a
longer calculation time. M,N pairs which involve common factors are
ignored. The distinct ratios for Nmax ¼ 6, for example, would be: 1:6, 1:5,
1:4, 1:3, 2:5, 1:2, 3:5, 2:3, 3:4, 4:5, 5:6.
isolated points where this ‘‘synchronisation” cannot be
achieved. A way of achieving reasonable computational
efficiency even in this case is described at the end of this
section.

The obvious concern with considering conditions that
correspond to integer ratios of the cycle period is whether
this re-introduces the potentially undesirable ‘‘resonances”

between the timescales. It is clearly impossible experimen-
tally to avoid all the integer ratios shown in Fig. 1—by def-
inition, a given experimental ratio will be arbitrarily close
to some rational number—but it could be argued that spa-
tial and temporal experimental variations mean that an
‘‘unusual” matching condition would never be perfectly
maintained for all the sample and for the complete experi-
ment. As shown later, however, cf. Fig. 7, these ‘‘reso-
nance” conditions are typically limited to a few simple
ratios such as 1:N where N is an integer from one to four
[20]. Hence using conditions which correspond to syn-
chronised timescales is not expected to introduce system-
atic distortions.
2.2. Efficient simulation of phase-modulated RF sequences

The rotating frame Hamiltonian for RF of phase /, and
possibly including an offset from resonance D, can be
derived from a corresponding Hamiltonian of another
phase, say x, by a simple rotation about z:

HRFð/Þ ¼ mRF½cos /F x þ sin /F y � þ DF z ð1Þ
¼ e�i/F z H RFð0Þei/F z ð2Þ

where F x, etc. are the sum operators for relevant nucleus.
Since the spin system Hamiltonian at high field is invariant
to z rotations, this means that the total spin Hamiltonian
and exponentials of Hamiltonian (i.e., the density matrix
propagators) can be derived by z rotations of correspond-
ing matrices calculated for zero (x) phase [23]. The z rota-
tion matrices, expði/F zÞ, are diagonal and so the
transformation of Eq. (2) is computationally inexpensive.
Moreover, the rotation matrices take up little storage space
and can be conveniently cached for re-use.

This has important consequences. If, for instance, a
pulse sequence consists of a series of RF pulses of the same
duration that differ only in their phase, then the propagator
for any step can be derived from a single propagator calcu-
lated with zero phase. Even if the system Hamiltonian is
time-dependent but periodic, e.g., due to sample spinning,
then it is still only necessary to compute the propagators of
a suitable time step over the course of one rotor period and
derive the required propagators by z rotation of the appro-
priate time-step propagators.

This is illustrated schematically in Fig. 2 for a 4:3 syn-
chronisation between the RF and rotor cycle periods.
The RF sequence involves steps with a common base dura-
tion, sc=4, and the synchronisation between the RF and
MAS periods implies that there is also a period,
scommon ¼ sc=12, which is a common time base for both
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Fig. 2. Illustration of synchronisation between sample spinning and a periodic phase-modulated RF sequence. There is a common overall period of
ssync ¼ 3sr ¼ 4sc and the phase changes occur at multiples of a base period scommon ¼ ssync=48 ¼ sr=16 ¼ sc=12. Rectangles mark an example of a repeated
pair of MAS and phase shift indices (see text).
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the phase modulation and rotation. Sixteen propagators
can then be calculated over one rotation period in steps
of scommon, using zero phase for the RF. The propagator
for a given scommon step can then be quickly determined
from the MAS propagator of the relevant index (0–15)
shifted by the relevant RF phase (0–2). Propagators for
arbitrary intervals (provided they are synchronised with
scommon) can be determined by accumulating these step
propagators. As a result, even though calculation of the
NMR signal requires the complete set of propagators over
the full shared interval of three rotor periods, the time-con-
suming calculation of propagators is only required over a
single rotor period. For simplicity we assume that the dwell
time used for the observation of the NMR signal is com-
mensurate with the base interval scommon and the overall
‘‘synchronisation time”, ssync. Since the spectral width can
normally be chosen freely, this is not an unreasonable
assumption and greatly simplifies the problem. A corre-
sponding assumption is required by COMPUTE [24] and
related algorithms [25,14] used for periodic problems.

It is occasionally possible that the accumulation of step
propagators to determine the overall propagator for a time
interval will involve multiplying the same pair of matrices.
This potentially allows common matrix multiplications to
be combined and further efficiency gains made. However,
the original proposal [26] was made in the context of
magic-angle spinning NMR in the absence of RF, in which
case the propagators are uniquely defined by the MAS
index. In the current situation where step propagators have
both an MAS index and an RF index, these combinations
can occur but are much rarer. In Fig. 2, for example, the
pairing of propagator with MAS index 3 and phase index
1 followed by propagator with MAS index 4 and phase 1
occurs twice over the synchronisation period. However
such combinations are rare and only occur here because
the same phase (y) is used for more than one RF base per-
iod of sc=4. Hence the time savings are expected to be min-
imal for non-trivial phase modulation periods and do not
seem to justify the complexity of implementation.

The restriction of this technique to pure phase-modu-
lated RF can be relaxed if the components of the sequence
can be divided into a limited number of RF ‘‘states” and
propagators over a rotor cycle are calculated for each of
these states. For instance, windowed DUMBO [27] could
be described in this framework by calculating two sets of
propagators—one for the RF on and the other for zero
RF—provided that there was a common time base between
the phase modulation step and the duration of the win-
dows. Clearly the efficiency advantage falls linearly as the
number of ‘‘states” increases and applying this approach
to, say, amplitude-modulated RF would clearly be
inappropriate.

2.3. A quick-and-dirty method for continuous phase-

modulated sequences

The discussion above suggests that calculations involv-
ing phase-modulated RF and magic-angle spinning can
be evaluated with comparable degrees of efficiency since
the propagation only needs to be evaluated over a single
rotor cycle in both cases. There is, however, a penalty asso-
ciated with cases where the common time base between the
phase modulation and the rotation, scommon, becomes very
small. This will be associated with ‘‘poor” synchronisation
conditions and/or phase modulations with short time steps.
In these cases scommon may be smaller than the time step
used for propagator integration, Dt, which is typically of
the order of 1 ls. In these cases, the total number of step
propagators evaluated over the rotor period will exceed
the number required to accurately capture the time-depen-
dence of the Hamiltonian, leading to a loss of computa-
tional efficiency. As an example, consider a phase
modulation such as DUMBO [3] which typically uses 128
phase steps in the complete RF cycle, sc. If the synchroni-
sation condition is 7sc ¼ 2sr, then the largest possible com-
mon time base is scommon ¼ sr=ð7� 64Þ. This corresponds to
calculating propagators for intervals of 0.22 ls for an MAS
rate of 10 kHz (sr ¼ 10 ls). If the integration of the propa-
gator requires a time resolution of, say, 1 ls to accurately
capture the time dependence of the Hamiltonian, then
many more step propagators will be calculated over the sin-
gle rotor period relative to a more conventional
calculation.

However, much of the computational effort in calculat-
ing several propagators over periods very much smaller
than the integration time step is redundant. If we are
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assuming that the Hamiltonian is effectively constant over
this interval, why re-diagonalise the Hamiltonian at each
point? Hence we propose a modified algorithm which ini-
tially calculates and diagonalises the Hamiltonian over a
set of points p, where sr=p is the time resolution. Whenever
a propagator is required for an interval (t1,t2), the previ-
ously calculated eigenbasis and eigenvalues for the time
point nearest the midpoint ðt1 þ t2Þ=2 are recovered and
used to calculate the propagator (cf. Eq. (3)), whose RF
phase can then be adjusted as required. This avoids a
time-consuming diagonalisation. The drawback to this
approach is the introduction of ‘‘timing jitter”; the time
point for the correct Hamiltonian eigenbasis and for the
eigenbasis actually used differ by as much as sjitter ¼ sr=2p
and this variation will differ from point to point of the cal-
culated signal. This error can be compared to the error
introduced by dividing the time evolution into finite inte-
gration time steps, although the nature of the error is differ-
ent; in one case the time points at which the Hamiltonian is
sampled are regularly spaced and the ‘‘error” arises from
their finite spacing, while in the other case the time points
‘‘jitter” about their ideal values.

In practice, and as confirmed by detailed analysis [28],
the calculated NMR spectra converge rapidly with decreas-
ing integration time step (the error terms scale as the square

of Dt). Fig. 3 illustrates the convergence of the calculation
method for PMLG-17 homonuclear decoupling on a nine
spin (three unit cell) geometry previously used to model
1H lines shapes in regular 3D lattices such as adamantane
[15]. The simulations were performed on Linux-based PC
equipped with dual AMD Athlon 2800+ processors using
an in-house simulation package specifically developed for
handling complex multi-spin problems [29]. The calcula-
tion using the methodology discussed in the previous sec-
tion, Fig. 3a, is extremely inefficient since the common
timebase for the RF and magic-angle spinning, scommon, is
much smaller than the integration time step, Dt. In this
400600800 Hz
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Fig. 3. (a) ‘‘Conventional” simulation of the 1H spectrum of a nine spin
calculation in which time points are allowed to ‘‘jump” by up to 0.5 ls to the n
Difference between the quick-and-dirty and conventional calculations as a fu
calculation times). 4096 data points were acquired, one per complete PMLG c
using a 3 Euler angle ZCW set.
case, the sr:sc ratio is 80:13 and the scommon works out to
be just 37 ns. Using the approach described above would
lead to excessively long calculation times—much longer
than the time required for a ‘‘conventional” calculation.
Pre-diagonalising the Hamiltonian over one rotor cycle
and allowing time points to move by up to 0.5 ls,
Fig. 3b, reduces calculation times by a factor of about
six. Fig. 3c shows how the spectrum approaches the ‘‘ideal”
spectrum of Fig. 3a as this maximum time point jitter is
reduced, at the cost of increasing the number of Hamilto-
nian diagonalisations and hence increased calculation time.

In many cases the dubious analytical characteristics of
this method will not be significant, e.g., when comparing
overall trends or crudely mapping out a problem. It would
be less appropriate, however, to use this ‘‘quick-and-dirty”

method when numerical accuracy is of paramount impor-
tance. For example, fitting data using gradient descent
methods involves the numerical calculation of gradients,
i.e., taking the difference of results calculated with slightly
modified starting parameters. This difference calculation is
very sensitive to numerical instabilities and so should not
be combined with underlying algorithms with poorly
defined convergence properties.
2.4. Calculation of propagators

Use of the methods described above helps to keep the
number of propagator calculations required to a minimum.
However, the resulting numerical simulations will only be
practical if the time required for calculating propagators
in multi-spin problems is reasonable.

The time-consuming step in most numerical simulations
involves calculating the propagator, U, for a time interval,
Dt, given the Hamiltonian at the midpoint of the interval,
i.e., UðDt; 0Þ ¼ expð�iHðDt=2ÞDtÞ. Although there are
many ways to compute matrix exponentials [30], the con-
Hz400600800

1.5 μs (150 min)

0.5 μs (179 min)

0.25 μs (219 min)

×10

×10

×10

(c)

adamantane-like spin system under 100 kHz PMLG-17 decoupling, (b)
earest time point for which the Hamiltonian has been pre-diagonalised. (c)
nction of the maximum jump time sjitter (figures in parentheses are total
ycle. The spectrum was integrated over 50 crystallite orientations selected
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ventional route in NMR simulations has been via matrix
diagonalisation:

UðDt; 0Þ ¼ V y expð�iKDtÞV ð3Þ

where V is the eigenvector matrix and K the diagonal ma-
trix of eigenvalues of H. Since H is by definition Hermitian,
the diagonalisation is numerically stable.

In some cases, however, it is clear that this route is not
the most suitable. For example, when calculating Liouville

space propagators,
ccU¼ expðbbLDtÞ, the Liouvillian,

bbL , is
often asymmetric (e.g., in the presence of exchange) and

highly sparse. Diagonalisation of
bbL is both inefficient and

numerically unstable. Calculation of the propagator using
Chebyshev techniques is both more efficient and numeri-
cally more stable.

In ‘‘Chebyshev propagation” [31,28], the matrix expo-
nential is expanded in terms of Chebyshev polynomials:

e�iHDt ¼ eiH 0s ¼
Xnmax

n

anðsÞT nðH 0Þ ð4Þ

where s and H 0 are scaled versions of Dt and H, respectively
(see below). The matrix terms of the expansion are defined
by the recursive relationship

T nþ1ðH 0Þ ¼ 2H 0T nðH 0Þ � T n�1ðH 0Þ ð5Þ

with T 1ðH 0Þ ¼ H 0 and T 0ðH 0Þ ¼ 1 (identity matrix). The
coefficients of the expansion are

anðsÞ ¼ ð2� dn0ÞinJ nðsÞ ð6Þ

where J nðsÞ are the n-th order Bessel functions.
The utility of this expansion lies in the very rapid conver-

gence of the coefficients anðsÞ—typically decreasing by an
order of magnitude per iteration. This is only true however
when �1 < s < 1, and so it is vital to scale the Hamiltonian
such that the value of scalar s used for the polynomial expan-
sion lies within this range. For the same fundamental reason,
the expansion will only converge if ðjjHDtjj ¼ jjH 0sjjÞ < 1
otherwise the T nðH 0Þ increase more rapidly than the anðsÞ
coefficients decrease. In other words, Chebyshev propaga-
tion is only stable for propagators calculated over relatively
short time periods. This is not a significant restriction, how-
ever, since describing propagation under a time-dependent
Hamiltonian by splitting the propagator into piecewise steps
is only valid in this limit in any case.

Scaling of the Hamiltonian requires the range of eigen-
values of H to be known approximately. If xmax and xmin

are the (approximate) maximum and minimum eigen-
values, then

H 0 ¼ �H � �x1

Dx
and s ¼ DxDt ð7Þ

where Dx ¼ ðxmax � xminÞ=2 and �x ¼ ðxmax þ xminÞ=2.
The mean of the eigenvalue range in principle contributes
a phase factor of expð�i�xDtÞ to the final propagator, but
this phase can be neglected since it has no impact of the
evolution of the density matrix. On a similar practical note,
the target value of s can be chosen in advance (say 0.5) and
the scale factor adjusted according (subject to the condition
that it exceed Dx). This allows the an coefficients to be pre-
calculated.

The eigenvalue range of H is efficiently estimated using
the Gershgorin circle theorem. Specialised for Hermitian
H, this states that the eigenvalues of H must lie within at
least one of the ranges

Hii �
X
j 6¼i

jHijj ð8Þ

where i runs over the rows of H. The overall minimum and
maximum values of Eq. (8) give xmin and xmax.

The time-consuming step of Chebyshev propagation is
the matrix–matrix multiplication of Eq. (5). Hence if H is
a dense matrix, then the computational burden is still
OðN 3Þ. Since several iterations are required for conver-
gence, Chebyshev techniques tend then to be less efficient
than classical diagonalisation methods, cf. Fig. 5. This is
the case for free precession Hamiltonians involving homo-
nuclear couplings. Provided that the diagonal block struc-
ture of the free precession Hamiltonian is exploited [22],
then the diagonal blocks contain many non-zero elements
due to the flip-flop terms of the homonuclear couplings.
In contrast, the Hamiltonian for problems involving RF
irradiation is no longer block diagonal, cf. Fig. 4. As a con-
sequence, the eigenvector matrix, V, is full when the matrix
is diagonalised and calculation of the step propagator via
Eq. (3) must involve the multiplication of full matrices.

In contrast, Chebyshev propagation involves, in effect,
the calculation of a power series in H. If H is sparse, then
larger powers of H will become increasingly less sparse, but
may not become completely full. If this sparsity is exploited
when calculating the T nðHÞ matrices, then Chebyshev
propagation can become competitive against diagonalisa-
tion. Fortunately simulations involving RF irradiation fall
into this category; the block structure of H is ‘‘band diag-
onal” with the RF terms responsible for the �1 diagonal
blocks. This is illustrated in Fig. 4. The ðH 0Þn (and
T nðH 0Þ) matrices steadily fill up with non-zero blocks as n

increases. The matrices will be full once the number of
Chebyshev iterations reaches the maximum coherence
order supported by the irradiated spins. Before this point
is reached, however, the presence of known empty blocks
significantly reduces the time required for multiplication.

Previous applications of Chebyshev propagation to
NMR problems in Liouville space have employed specia-
lised sparse matrix methods for the storage and multiplica-
tion of Liouville space operators. In contrast to the highly
sparse matrices of Liouville operators, the Hilbert space
matrix representations used here are considerably denser
and have a well-defined block structure (cf. Fig. 4). More-
over, the final propagators are relatively dense and so there
is little advantage from the viewpoint of storage to the use
of sparse matrices. Hence the matrices used here were
stored as full matrices and the known block structure sim-
ply used to determine which blocks were non-zero and
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which empty. This allows conventional, but highly opti-
mised routines, for dense matrix multiplication [32] to be
used rather than the specialised routines required for the
multiplication of sparse matrices.

Note that the algorithm described in the previous sec-
tion cannot easily be combined with the Chebyshev
approach to calculating propagators. When propagator
calculation proceeds via diagonalisation, the eigenvalues
and eigenvectors of the Hamiltonian at the different time
points can be stored, allowing the rapid calculation of the
propagator for an arbitrary interval based around the
given time point. ‘‘Pre-calculation” in the Chebyshev
approach would requiring storing the complete Chebyshev
series, T n, for each point and (expensive) calculation of the
Chebyshev coefficients, anðsÞ, for arbitrary values of s.

Fig. 5 illustrates the relative merits of Chebyshev prop-
agation vs. classical techniques using simulations of
PMLG-11 decoupling. The network geometry was based
on a periodic lattice with unit cells of two spins each
repeated in one dimension—a geometry that has been pre-
viously used to model 1H lineshapes in methylene groups
[15]. Periodic boundary conditions imposed on the cou-
pling network reduce ‘‘edge effects” associated with mod-
elling an extended network in terms of a limited number
of spins. In addition, a periodic lattice allows the problem
to be expressed in a symmetry-adapted basis set, greatly
improving the computational efficiency [13,33]. The figure
shows the time taken as the number of unit cells is
increased both when the symmetry-adapted basis is used
(‘‘periodic” calculation) or when using the conventional
basis (‘‘non-periodic” calculation). As previously demon-
strated, exploiting periodic symmetry greatly improves
calculation times and/or allows larger spin systems to be
considered. The main interest, however, lies in comparing
the performance of Chebyshev and classical propagation
techniques. As anticipated above, Chebyshev techniques
perform more poorly than diagonalisation for small spin
systems, but are increasingly advantageous as the size
of the spin system increases above about 4 coupled
spin-½ nuclei. (Note that the timings for the Chebyshev,
non-periodic calculations were very close to those
obtained with an independent simulation programme
[14] implying that the particular implementation of
Chebyshev propagation used is entirely reasonable.) It is
noticeable that the advantage of Chebyshev propagation
is less marked for the specialised periodic calculations.
The use of the symmetry-adapted basis set for a network
of N unit cells divides the operator matrices into N smal-
ler matrices. As already noted, the diagonalisation
approach is most efficient with smaller matrices, hence
the advantage of Chebyshev propagation is reduced if
additional symmetry is exploited. However, it is not
always possible or appropriate to exploit periodic symme-
try and in these cases the Chebyshev approach provides
substantial performance gains for larger spin systems.
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3. Application to 1H homonuclear decoupling

The design of efficient and robust pulse sequences for 1H
homonuclear decoupling is both an important but highly
challenging topic of on-going research. Rather than
attempt a comprehensive review of all the different factors
that interact to determine spectral quality under homonu-
clear decoupling, the remainder of this paper will illustrate
how numerical simulation can be used to shed light on the
problem and address specific questions of interest.

We have previously shown that numerical simulation
can effectively reproduce 1H spectra under magic-angle
spinning for a variety of network geometries without the
need for adjustable or empirical parameters [15]. Fig. 6 per-
forms a corresponding comparison between simulation and
experiment for 1H systems under homonuclear RF decou-
pling and magic-angle spinning. The plots compare full-
width-at-half-height linewidths of numerically simulated
spectra with results obtained from experiments in which a
spin–echo was used to refocus decay due to inhomoge-
neous factors (chemical shift distributions, magnetic field
inhomogeneity, etc.). The experiments were carried out
on a Varian InfinityPlus spectrometer operating at
499.7 MHz for 1H using microcrystalline powder samples
packed into zirconia rotors with an outside diameter of
2.5 mm. Homonuclear decoupling was applied during the
spin–echo delays and the intensity of the spin–echo signal
measured as a function of the delay period. The decay
was fitted to a simple decaying exponential to determine
a nominal T 02 which was then expressed as a linewidth,
i.e., 1=pT 02. T 02 is used to emphasise that the decay is not
due to true T 2 relaxation [34] (and is often not simply
exponential).

The numerical simulations used the 3� 3 spin model
previously described in association with Fig. 3, with the
overall dipolar coupling strength, drss, matched to the cor-
responding system [33]. Since there are no inhomogeneous
line-broadening factors in these idealised simulations, the
spin–echo present in the experiments was omitted for sim-
plicity of implementation; simulations on a test case con-
firmed that inclusion of an ideal p refocussing pulse had
no effect on the decay of the simulated signal. Given that
no adjustable parameters are present, the agreement
between predicted and measured linewidths is reasonably
good at low RF powers (as expressed by the nutation rate,
mRF). The simulations also confirm that the linewidth under
an ‘‘ideal” homonuclear decoupling sequence such as
FSLG decreases as approximately m�2

RF. (The deviations
from this dependence at lower RF rates can be associated
with the ‘‘resonance condition” mRF � 4mr cf. Fig. 7.)

However, the deviation between experimental and calcu-
lated values increases markedly as the RF power is
increased. In particular, the experimental decoupling per-
formance becomes worse at high RF nutation rates rather
than improving as expected intuitively and confirmed by
simulation. This breakdown occurs at much lower powers
in the case of adamantane where the dipolar coupling is
much weaker, while the cross-over occurs at nutation rates
of about 100 kHz for the more typical organic solid. This
difference reflects the intrinsically broader lines associated
with stronger coupling networks; the increasing artefact
level only becomes apparent when the dipolar linewidth
has been sufficiently suppressed by high power RF decou-
pling. Although the origin of the deviations between exper-
iment and simulation is not currently understood, the fact
that very similar curves are observed in Fig. 6b for PMLG
sequences with more or less coarse phase ramps suggests
that they are neither directly related to increasingly short
RF pulses (otherwise systematic trends would be observed
going from PMLG-11 to PMLG-17 to PMLG-21 decou-
pling) nor due to subtle timing issues, i.e., whether pulse
durations are simple multiples of internal clock times
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(otherwise more erratic behaviour, depending on the
matching of timing conditions, would be expected).

Although these multi-spin calculations provide theoreti-
cal reference points for comparison with experimental
results in Fig. 6, they are not of themselves able to explain
the observed experimental behaviour. In the examples
below numerical simulation is used to address specific ques-
tions relevant to homonuclear decoupling. Under these
conditions, the simulations are invaluable in rationalising
experimental results.

3.1. Interaction between magic-angle spinning and

homonuclear decoupling

The initial development of homonuclear decoupling
sequences [35–37] focussed on suppressing dipolar line-
width in static samples. In Combined Rotation and Multi-
ple-Pulse Spectroscopy (CRAMPS) experiments [38,39],
magic-angle spinning is also applied to suppress other
sources of line-broadening in solids, most notably the chem-
ical shift anisotropy (CSA). But the magic-angle spinning
rate was always modest to prevent interference between
the periods of the rotation and RF irradiation, sc and sr,
i.e., experiments were performed in the ‘‘quasi-static” limit
in which sc � sr. Working in the quasi-static limit also
greatly simplified the design of decoupling pulse sequences
for CRAMPS since the magic-angle spinning could be effec-
tively ignored. Analytical work also confirmed the destruc-
tive interactions between magic-angle spinning and
homonuclear decoupling [20,40]. Although there have been
isolated reports of decoupling techniques that take explicit
account of magic-angle spinning [18,41], these approaches
have not apparently been developed further.

Using the techniques described above, it is straightfor-
ward to examine the interaction between magic-angle spin-
ning and homonuclear decoupling in simulation. Fig. 7
confirms that destructive interference occurs between
FSLG homonuclear decoupling and MAS when sr=sc is a
integer ratio less than five [20], and that efficient decoupling
is only obtained if sr=sc > 3 (and the resonance condition
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Fig. 7. Linewidth of the 1H spectrum under 100 kHz FSLG decoupling as
a function of MAS rate. Destructive interference occurs when sr=sc is a
small integer ratio.
at sr=sc ¼ 4 is avoided). Note that multi-spin simulations
are necessary to characterise this behaviour; calculations
on simple two spin systems, for example, are unrevealing
since the magic-angle spinning alone is sufficient to refocus
the evolution under the dipolar coupling and so no sense of
the performance of the RF sequence is obtained.

It is important to note, however, that these simulations
only confirm that magic-angle spinning tends to degrade
the performance of ideal homonuclear decoupling
sequences that were developed in the quasi-static limit. This
does not imply that MAS is always a negative influence.
This can be seen clearly in Fig. 8b which compares FWHM
linewidths for simulated 1H spectra from the ‘‘alanine”

model system under conditions of both FSLG and PMLG
decoupling and static vs. MAS conditions. At low RF pow-
ers, the linewidths are indeed significantly worse in the
presence of magic-angle spinning. As discussed above,
however, this is associated with a resonance condition,
and the performance of both FSLG and PMLG decoupling
is noticeably better at higher RF powers than the corre-
sponding results under static conditions. Under static con-
ditions, where there is no interaction with sample spinning,
the linewidth under FSLG scales perfectly with m�2

RF. This
behaviour is not followed by PMLG, with the performance
of PMLG-11 degrading significantly relative to an ideal
phase ramp (i.e., FSLG) as the RF power increases. The
most striking feature of Fig. 8 is that magic-angle spinning
is effectively compensating for the approximate nature of
the discrete phase ramp used in PMLG. This is consistent
with experimental observations (obtained under MAS)
where it was found that even very crude ramps, e.g., six
phase steps in the complete PMLG cycle (PMLG-3) was
sufficient to obtain good homonuclear decoupling [20].
Although detailed (and rather involved) multi-modal Flo-
quet treatments may be required to elucidate the physical
basis of this ‘‘cleaning up” of the imperfections associated
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decoupling power, mRF.
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with finite resolution phase, the simulations are invaluable
in establishing the significance of interaction between sam-
ple spinning and RF irradiation.

Positive interactions between sample spinning and homo-
nuclear decoupling are also demonstrated in Fig. 9. This con-
siders the effects of RF inhomogeneity on the performance by
FSLG decoupling by calculating the 1H spectrum under
FSLG decoupling as a function of the deviation of the actual
RF nutation rate from a nominal value of 100 kHz. In the
case of static samples, Fig. 9a, the spectrum is extremely sen-
sitive to minor (5%) variations of the nutation rate. Hence
inhomogeneity of the B1 field would have a significant line-
broadening effect. In contrast, the effect of deviations of the
RF amplitude from its nominal value is much less marked
under MAS conditions, Fig. 9b. Note that the narrowest line-
shape is actually obtained when the actual RF nutation rate
differs from its nominal value (at about 92 kHz).

These results have important practical consequences.
Traditional CRAMPS experiments typically involved
lengthy tune-up procedures to maximise resolution and min-
imise artefacts [42,43], including careful measurement of the
RF nutation rate on static samples with narrow linewidths.
Certainly in the case of FSLG decoupling, as shown in
Fig. 9b, careful calibration of the nutation rate is relatively
unimportant under MAS conditions and indeed the optimal
conditions under MAS may be subtly different to those deter-
mined under static conditions. It is also worth noting the ease
with which such valuable information about experimental
parameters is derived from numerical simulation. Although
FSLG (and the related sequence PMLG) has been analysed
analytically using bimodal Floquet theory [20,21], the com-
plexity of the analysis even for idealised conditions makes
it difficult to determine how experiments will perform under
less than ideal conditions.

3.2. Tilt pulses in windowed homonuclear decoupling

sequences

A significant complicating factor in the use of homonu-
clear decoupling to improve 1H resolution in the solid state
3 2 1 0 –1 –2
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95 kHz (x10)

100 kHz

110 kHz (x10)

(a) (

Fig. 9. Effect of deviation of the RF field strength from its ideal value on the 1H
static conditions, (b) under magic-angle spinning at 12 kHz. Timing parameters
actual RF field rate from this nominal value is much more dramatic in the ca
is that the effective precession axis during the homonuclear
decoupling period is tilted away from the z-axis, e.g., at the
magic angle for Lee–Goldburg and frequency-switched
Lee–Goldburg decoupling. The tilted plane of precession
means that large quadrature images would be observed
unless the precession plane is tilted into the xy plane prior
to detection of the x and y components of the magnetisa-
tion. There are a limited number of decoupling sequences
in which the precession axis is oriented along z [44–46],
however, such sequences have not, to date, out-performed
sequences which involve tilted axis precession, and they
have not been widely adopted.

The use of tilt pulses either side of homonuclear decou-
pling periods in indirect dimensions is relatively straightfor-
ward, although the position of the effective precession axis
needs to be clearly established if quadrature and zero fre-
quency artefacts are to be minimised [27]. Tilt pulses are also
required, in principle, if homonuclear decoupling is being
applied during the acquisition dimension, i.e., the 1H mag-
netisation is being sampled during gaps in a windowed
sequence. It is found, however, that the optimised tilt pulses
for detection in t2 are generally very different from those opti-
mal for t1 [47,6]. In particular, the parameters describing the
optimal tilt pulses in t1 generally coincide with the values
expected for the given decoupling sequence, while optimal
results are obtained for detection in t2 with much shorter
pulses or by omitting tilt pulses completely.

Fig. 10 shows the results of simulations which examine
the role of tilt pulses in the directly detected dimensions.
As shown in Fig. 10b, an artefact free spectrum is obtained
when using ideal (delta function) pulses of the ‘‘expected”

duration, that is tilting through the magic angle. This sim-
ple picture changes, however, if finite-duration pulses (of
the same RF amplitude as the homonuclear decoupling)
are used, Fig. 10c. Although the quadrature artefact
remains suppressed, the quality of the decoupling is
degraded; the linewidth increases and so the signal height
and sensitivity is also diminished. Decreasing the duration
of the tilt pulses improves resolution at the cost of increas-
ing the magnitude of the quadrature artefact, with the
kHz
3 2 1 0 –1 –2

80 kHz
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110 kHz

b)

spectrum of the adamantane-like spin system under FSLG decoupling: (a)
and RF offsets were set for mRF ¼ 100 kHz. The effect of deviations of the

se of static samples.
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results from a 7� tilt pulse (as used experimentally in Ref.
[6] for example), being barely distinguishable from the
results obtained without tilt pulses.

Clearly it is not possible to consider the effect of tilt
pulses in directly detected dimensions independently of
the decoupling sequence, and again, numerical simulation
provides a straightforward and direct way to investigate
the interaction. It is also worth emphasising that the pres-
ence of decoupling windows themselves can interact in
interesting, and potentially useful, ways with the decou-
pling sequence. For example, the combination of acquisi-
tion windows and a coarse Lee–Goldburg phase ramp in
the windowed-PMLG-5 decoupling sequence resulted in a
net precession axis around z, avoiding the problems associ-
ated with tilted axis precession [47].
x

yx

y

0 ns
100 ns
200 ns

Fig. 11. Effect of phase propagation delays on the tilted axis precession
using (a) PMLG-17 and (b) DUMBO-1 homonuclear decoupling at RF
nutation rates of 100 kHz nutation rate for different values of the
propagation delay: 0, 100 and 200 ns. The diagrams plot the simulated
position of the rotating frame 1H magnetisation vector for a single spin
with a frequency of 1 kHz relative to the transmitter. The dwell time
between observations was 81.7 ls for PMLG (5 complete cycles) and 90 ls
for DUMBO (3 complete cycles).
3.3. Phase propagation delays

As a consequence of non-linear elements (typically fil-
ters) in the RF generation pathway, there is often a small,
but observable, lag between amplitude and phase changes.
Hence if two pulses of the same duration but different
phases are programmed back-to-back, the phase change
will typically lag behind the amplitude changes associated
with the start and end of the pulse pair. Effectively the first
pulse (or rather the phase of the first pulse) will appear to
be longer than the second pulse. The magnitude of these
effects depends strongly on the particular spectrometer
console, but delays of the order of about 200 ns have been
observed in practice [17]. Hence in a train of constant-
amplitude phase-modulated pulses, the first pulse will
appear to be longer than expected and the last shorter than
expected by the same amount due to this lag. The overall
effect of the delay can thus be expressed as the ideal phase
modulation sandwiched between a pair of short tilt pulses.

The impact of these delays on the performance of homo-
nuclear decoupling depends strongly on the nature of the
decoupling sequence. If the homonuclear decoupling is
being applied as a windowless train of pulses, e.g., during
an indirect dimension, then the effective addition of a pair
of small tilt pulses either side of the homonuclear decou-
pling has minimal effect, and may be absorbed into the
optimisation of any ‘‘magic angle” tilt pulses bracketing
the homonuclear decoupling [27]. In contrast, the cumula-
tive impact of phase propagation delays can be much larger
for windowed sequences since each window effectively
introduces an additional pair of tilt pulses.

These effects are illustrated in Fig. 11 which shows the pre-
cession plane traced out by the 1H magnetisation vector for
both PMLG and DUMBO-1 [3] decoupling for different val-
ues of the phase propagation delay. Since the overall preces-
sion is of most interest, it is sufficient to perform the
simulations using a single nuclear spin with a non-zero fre-
quency relative to the transmitter and trace out the compo-
nents of the magnetisation in x, y and z as a function of the
acquisition time. Since the effects of the propagation delays
are associated with the windows of the decoupling
sequences, the dwell times have been chosen to be approxi-
mately equal for PMLG and DUMBO. Despite this, the
effects on the precession plane are very different for the two
homonuclear decoupling sequences. In the case of PMLG,
the propagation delays lead to a modest tilting of the preces-
sion plane which could be readily compensated by reducing
the size of any observation tilt pulses (see above). In practice,
any tilt pulses are generally optimised empirically and this
modification of the precession plane is unlikely to be noticed.
In contrast, the propagation delays have a much more
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marked effect on the precession under DUMBO decoupling.
In this case, the size of the precession circle (and hence the
overall signal) is reduced and a sizeable zero frequency arte-
fact (associated with the overall shift away from the origin of
the xy plane) would be expected.

The origin of this difference is relatively easily explained.
For most phase-modulated homonuclear decoupling
sequences, including both PMLG and DUMBO decou-
pling, the phase of the first and last pulses of the decoupling
sequence differ by 180� (this ensures that the decoupling
sequence is ‘‘cyclic”, i.e., there is no net rotation of the axis
system over the complete RF cycle). Since the phase propa-
gation delay effectively lengths the first and shortens the last
pulse of a train, its effects can be described in terms of a pair
of additional short tilt pulses of the same phase as the initial
pulse. The effect of these tilt pulses depends strongly on their
phase relative to the spin–lock axis. The phase modulations
used for the two decoupling sequences in Fig. 11 have been
chosen such that the spin–lock axis lies in the xz plane. How-
ever, the phases of the initial pulses, with respect to x, are
quite different. In the case of PMLG, Fig. 11a, the initial
pulse has a phase close to x (exactly in the limit of large
N) whereas in the case of DUMBO-1, the phase of the initial
pulse is y. The net precessional motion is very different in the
two cases. The conclusion is that aligning the initial RF
phase with the effective spin–lock axis leads to decoupling
sequences that are much more robust with respect to phase
propagation delays.

It is important to stress, however, that the magnitude of
the propagation delays are strongly spectrometer-depen-
dent. Indeed on some current console designs (including
the InfinityPlus used in this work), the delays were negligi-
bly small and major source of pulse imperfections is likely
to lie in the finite rise and fall times associated with ampli-
tude and phase changes in any tuned circuit [16].

4. Conclusions

A number of algorithms that are relevant to the numer-
ical simulation of problems in spin dynamics involving
both magic-angle spinning and RF decoupling have been
described. These have been implemented and evaluated
using in-house software optimised for large spin systems.
(This software and its sources is freely available [29], and
the specific input files used are also available on request.)
Chebyshev propagation is shown to be a useful alternative
to conventional approaches to propagator calculation
where the Hamiltonian is time-dependent and relatively
sparse, as is the case for multi-spin systems under RF
decoupling. A simple, if rather crude, algorithm for effi-
cient simulations of problems involving phase-modulated
RF decoupling has also been described which allows a sin-
gle set of propagators over one rotor cycle to be used, irre-
spective of the degree of ‘‘synchronisation” of the RF and
spinning time periods. Note that some of these algorithms
are also implemented in SPINEVOLUTION [14] which is
also designed to handle large and challenging problems in
solid-state NMR, and which performs with similar effi-
ciency for comparable problems. In contrast, the perfor-
mance of programs such as SIMPSON [48] which do not
exploit the sparse nature of Hamiltonian for many-spin
problems (except for the special case of diagonal Hamilto-
nians) is significantly poorer [14].

The resulting efficient simulations have been used to
investigate 1H resolution under homonuclear decoupling.
This is a formidable challenge due to the number of factors
involved and the potential interactions between these fac-
tors. In general terms, resolution loss can either result from
degraded decoupling efficiency, resulting in broader lines,
or from variations in the effective precession axis or nuta-
tion rate (such variations can either be spatial or temporal).
Variations of the precession axis can usually be determined
in terms of a individual nuclear spin, but questions of res-
olution invariably involve considering multi-spin systems.
Unfortunately, the dynamics of multi-spin systems are
challenging to determine analytically and are rarely tracta-
ble outside special (and idealised) cases. Although numeri-
cal simulation may appear to offer little in the way of
physical insight, it is proving to be a invaluable tool in
unravelling the different factors that determine 1H resolu-
tion in solids. Efficient algorithms, including those
described here, allow arbitrarily complex and non-ideal
experiments to be assessed in a straightforward and routine
manner. This allows specific questions to be addressed and
new insights into observed experimental behaviour that are
not readily obtained from analytical work. In particular,
we have shown that magic-angle spinning and homonu-
clear decoupling often interact constructively. While
MAS may lead to unwelcome interactions when classic
homonuclear decoupling sequences are applied under ideal
conditions, it can significantly reduce artefacts associated
with experimental imperfections, such as RF inhomogene-
ity, or limitations of the pulse sequence itself (e.g., PMLG
decoupling applied with a limited number of phase steps).
This confirms the interest of developing decoupling
sequences by direct spectral optimisation under MAS con-
ditions [19].

The complexity of experiments involving homonuclear
decoupling is significantly increased if the 1H signal is being
acquired via windows inserted in the pulse sequence. We
have shown that effects, such as phase propagation delays
and finite-duration tilt pulses, which are of negligible sig-
nificance in indirect dimensions, become very important
in directly acquired dimensions. The simulations confirm
empirical observations that much shorter tilt pulses are
required in directly (as compared to indirectly) acquired
dimensions. They also show that the impact of small time
lags between phase and amplitude changes depends
strongly on the decoupling sequence, providing additional
guidelines for the design of effective and robust phase-mod-
ulated decoupling sequences.

Although the work described advances our understand-
ing of these experiments, it is important to emphasise that
there are still important discrepancies between observed
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and predicted behaviour, cf. Fig. 6. This suggests that there
is still significant room for improvement (either in hard-
ware or experimental methodology), and the limits of 1H
resolution in solids have yet to be reached.
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